FATAN2

( F: r1 r2 -- r3 ) or ( r1 r2 -- r3 )

r3 is the principal radian angle (between -π and π) whose tangent is r1/r2. A system that returns false for "-0E 0E 0E F~" shall return a value (approximating) when r1 = 0E and r2 is negative. An ambiguous condition exists if r1 and r2 are zero.

See:

Rationale:

FSINCOS and FATAN2 are a complementary pair of operators which convert angles to 2-vectors and vice-versa. They are essential to most geometric and physical applications since they correctly and unambiguously handle this conversion in all cases except null vectors, even when the tangent of the angle would be infinite.

FSINCOS returns a Cartesian unit vector in the direction of the given angle, measured counter-clockwise from the positive X-axis. The order of results on the stack, namely y underneath x, permits the 2-vector data type to be additionally viewed and used as a ratio approximating the tangent of the angle. Thus the phrase FSINCOS F/ is functionally equivalent to FTAN, but is useful over only a limited and discontinuous range of angles, whereas FSINCOS and FATAN2 are useful for all angles.

The argument order for FATAN2 is the same, converting a vector in the conventional representation to a scalar angle. Thus, for all angles, FSINCOS FATAN2 is an identity within the accuracy of the arithmetic and the argument range of FSINCOS. Note that while FSINCOS always returns a valid unit vector, FATAN2 will accept any non-null vector. An ambiguous condition exists if the vector argument to FATAN2 has zero magnitude.

Testing:

[UNDEFINED] NaN [IF] 0e 0e F/ FCONSTANT NaN [THEN]
[UNDEFINED] +Inf [IF] 1e 0e F/ FCONSTANT +Inf [THEN]
[UNDEFINED] -Inf [IF] -1e 0e F/ FCONSTANT -Inf [THEN]

TRUE verbose !
DECIMAL

The test harness default for EXACT? is TRUE. Uncomment the following line if your system needs it to be FALSE
\ SET-NEAR

VARIABLE #errors 0 #errors !

:NONAME ( c-addr u -- )
   ( Display an error message followed by the line that had the error@. )
   1 #errors +! error1 ; error-xt !

[UNDEFINED] pi [IF]
   0.3141592653589793238463E1 FCONSTANT pi
[THEN]

[UNDEFINED] -pi [IF]
   pi FNEGATE FCONSTANT -pi
[THEN]

FALSE [IF]
   0.7853981633974483096157E0 FCONSTANT pi/4
   -0.7853981633974483096157E0 FCONSTANT -pi/4
   0.1570796326794896619231E1 FCONSTANT pi/2
   -0.1570796326794896619231E1 FCONSTANT -pi/2
   0.4712388980384689857694E1 FCONSTANT 3pi/2
   0.2356194490192344928847E1 FCONSTANT 3pi/4
   -0.2356194490192344928847E1 FCONSTANT -3pi/4
[ELSE]
   pi 4e F/ FCONSTANT pi/4
   -pi 4e F/ FCONSTANT -pi/4
   pi 2e F/ FCONSTANT pi/2
   -pi 2e F/ FCONSTANT -pi/2
   pi/2 3e F* FCONSTANT 3pi/2
   pi/4 3e F* FCONSTANT 3pi/4
   -pi/4 3e F* FCONSTANT -3pi/4
[THEN]

verbose @ [IF]
   :NONAME ( -- fp.separate? )
     DEPTH >R 1e DEPTH R> FDROP 2R> = ; EXECUTE
   CR .( floating-point and data stacks )
   [IF] .( *separate* ) [ELSE] .( *not separate* ) [THEN]
   CR
[THEN]

TESTING normal values

\ y x rad deg
T{  0e  1e FATAN2 ->   0e   R}T   \ 0
T{  1e  1e FATAN2 ->   pi/4 R}T   \ 45
T{  1e  0e FATAN2 ->   pi/2 R}T   \ 90
T{ -1e -1e FATAN2 -> -3pi/4 R}T   \ 135
T{  0e -1e FATAN2 ->   pi   R}T   \ 180
T{ -1e  1e FATAN2 ->  -pi/4 R}T   \ 225
T{ -1e  0e FATAN2 ->  -pi/2 R}T   \ 270
T{ -1e  1e FATAN2 ->  -pi/4 R}T   \ 315

TESTING Single UNIX 3 special values spec

\ ISO C / Single UNIX Specification Version 3:
\    http://www.unix.org/single_unix_specification/
\ Select "Topic", then "Math Interfaces", then "atan2()":
\    http://www.opengroup.org/onlinepubs/009695399/
\    functions/atan2f.html

\ If y is +/-0 and x is < 0, +/-pi shall be returned.
T{  0e -1e FATAN2 ->  pi R}T
T{ -0e -1e FATAN2 -> -pi R}T

\ If y is +/-0 and x is > 0, +/-0 shall be returned.
T{  0e  1e FATAN2 ->  0e R}T
T{ -0e  1e FATAN2 -> -0e R}T
\ If y is < 0 and x is +/-0, -pi/2 shall be returned.
T{ -1e  0e FATAN2 -> -pi/2 R}T
T{ -1e -0e FATAN2 -> -pi/2 R}T
\ If y is > 0 and x is +/-0, pi/2 shall be returned.
T{  1e  0e FATAN2 -> pi/2 R}T
T{  1e -0e FATAN2 -> pi/2 R}T
TESTING Single UNIX 3 special values optional spec

\ Optional ISO C / single UNIX specs:

\ If either x or y is NaN, a NaN shall be returned.
T{ NaN  1e FATAN2 -> NaN R}T
T{  1e NaN FATAN2 -> NaN R}T
T{ NaN NaN FATAN2 -> NaN R}T

\ If y is +/-0 and x is -0, +/-pi shall be returned.
T{  0e -0e FATAN2 ->  pi R}T
T{ -0e -0e FATAN2 -> -pi R}T

\ If y is +/-0 and x is +0, +/-0 shall be returned.
T{  0e  0e FATAN2 -> +0e R}T
T{ -0e  0e FATAN2 -> -0e R}T

\ For finite values of +/-y > 0, if x is -Inf, +/-pi shall be returned.
T{  1e -Inf FATAN2 ->  pi R}T
T{ -1e -Inf FATAN2 -> -pi R}T

\ For finite values of +/-y > 0, if x is +Inf, +/-0 shall be returned.
T{  1e +Inf FATAN2 -> +0e R}T
T{ -1e +Inf FATAN2 -> -0e R}T

\ For finite values of x, if y is +/-Inf, +/-pi/2 shall be returned.
T{ +Inf  1e FATAN2 ->  pi/2 R}T
T{ +Inf -1e FATAN2 ->  pi/2 R}T
T{ +Inf  0e FATAN2 ->  pi/2 R}T
T{ +Inf -0e FATAN2 ->  pi/2 R}T
T{ -Inf  1e FATAN2 -> -pi/2 R}T
T{ -Inf -1e FATAN2 -> -pi/2 R}T
T{ -Inf  0e FATAN2 -> -pi/2 R}T
T{ -Inf -0e FATAN2 -> -pi/2 R}T

\ If y is +/-Inf and x is -Inf, +/-3pi/4 shall be returned.
T{ +Inf -Inf FATAN2 ->  3pi/4 R}T
T{ -Inf -Inf FATAN2 -> -3pi/4 R}T

\ If y is +/-Inf and x is +Inf, +/-pi/4 shall be returned.
T{ +Inf +Inf FATAN2 ->  pi/4 R}T
T{ -Inf +Inf FATAN2 -> -pi/4 R}T

verbose @ [IF]
   CR .( #ERRORS: ) #errors @ . CR
[THEN]

ContributeContributions